Skewness, Kurtosis, and Moments

BBS $1^{\text {st }}$ Year
skewness. Kurtosis and Moments
\rightarrow The lack of symmetry of a distribution is called skewness.
\rightarrow It relates to the shape but not the size of a frequency
curve.
\rightarrow A distribution which is not symmetrical (same) is said to be skewed. SO, skewness is the lack of symmetry.
\rightarrow Generally, there are two types of skewness.
a. Positive skewness
b. Negative skewness
a. Positive skewness

Skewness is said to be positive when the curve of the frequency distribution has a longer tail on the right.

Mean $>$ Median $>$ Mode
b. Negative skewness
skewness is said to be negative if the curve of the frequency distribution is elongated more on the left than the right.

Mean < Median < Mode

Zero skewness/symmetrical
If the tails of the curve of the frequency distributt on either side of the central value are equal, then the distribution is said to be symmetrical

* Measure of skewness / coefficient of skewness
a. Karl Pearson's Measure of skewness

First Measure of skewness

$$
S_{k}(p)=\frac{\text { Mean }- \text { Mode }}{\text { Standard Deviation }}=\frac{\bar{x}-M_{0}}{6}
$$

Second Measure of skewness

$$
S_{k}(P)=\frac{3(\bar{x}-M d)}{\sigma}
$$

Decision:
a. If $S_{k}=0$, the distribution is symmetrical (normal)
b. If $S_{k}>0$, the distribution is positively skewed
c. If $S_{k}<0$, the distribution is negatively skewed
b. Bowley's Measure of skewness

The second coefficient of skewness based on quartiles is known as Bowley's coefficient of skewness.

$$
S_{K}(B)=\frac{Q_{3}+Q_{1}-2 M_{d}}{Q_{3}-Q_{1}}
$$

c. Kelly's coefficient of skewness

Kelly's coefficient of skewness is based on percentiles or deciles.

$$
\begin{gathered}
S_{k}(\text { kelly })=\frac{P_{90}+P_{10}-2 M_{d}}{P_{90}-P_{10}}=\frac{P_{90}+P_{10}-2 P_{50}}{P_{90}-P_{10}} \\
0 R_{1} \quad S_{k}(\text { kelly })=\frac{D_{9}+D_{1}-2 D_{5}}{D_{9}-D_{1}}
\end{gathered}
$$

* Five -Number summary

a. Minimum value $\left(x_{3}\right)$: The small item in the set of observation.
b. Lower Quartile $\left(Q_{1}\right)$: The value below of which lie 25% of the set of observations.
C. Median (Md): The value below and above of which 50% of the observations.
d. Upper Quartile $\left(Q_{3}\right)$: The value above of which lies 25% of the observations
e. Maximum Value $\left(X_{L}\right)$: The largest item in the set of observations.
* Box-And-whiskerplots

Moments:
The arithemtic average of the various powers of the deviations of the items in a distribution from their arithmetic mean are known as the moments of the distribution.

Moments about the Mean (central moments) Individual Series:

$$
\mu_{r}=\frac{\sum(x-\bar{x})^{r}}{n}=\frac{\sum x^{r}}{n}
$$

Where,

$$
\begin{aligned}
& x=\text { Arithmetic Mean } \\
& x=x-\bar{x} \\
& n=\text { Number of terms } \\
& r=1,2,3,4 \text { are the first four moments } \\
& \text { about the mean. }
\end{aligned}
$$

Here.

$$
\begin{aligned}
& u_{1}=\text { First moment about Mean }=\frac{\sum x}{n}=0 \\
& u_{2}=\text { Second moment about Mean }=\frac{\Sigma x^{2}}{n} \\
& u_{3}=\text { Third moment about Mean }=\frac{\Sigma x^{3}}{n} \\
& u_{4}=\text { Fourth moment about Mean }=\frac{\Sigma x^{4}}{n}
\end{aligned}
$$

Discrete and continuous series:
$\mu_{r}=\frac{\sum f(x-\bar{x})^{r}}{N}=\frac{\sum f x^{r}}{N}$
Where, $x=x-\bar{x}$
$N=$ Total frequency
$u_{1}=$ First moment about Mean $=\underline{\sum f x}$ N
$\mu_{2}=$ Second moment about Mean $=\frac{\sum f x^{2}}{N}$
$\mu_{3}=$ Third moment about Mean $=\frac{\sum f x^{3}}{N}$
$\mu_{4}=$ Forth moment about Mean $=\frac{\sum f X^{4}}{N}$

Where.

$$
X=\text { middle value of class (for continuous series) }
$$

Moments about an Arbitary Point (Raw moments)
The calculation of the moments about the mean will be easy only when the arithmetic mean of the given series be in whole number. But if the arithmetic mean be not a whole number, then the calculation will be too difficult. In such cases, we find the moments about any number
(arbitrary number). Such type of moments are known as raw moments. It is dented by e^{\prime}.

Individual series:

$$
u_{r}^{\prime}=\frac{\sum(x-a)^{r}}{n}=\frac{\sum d^{r}}{n}
$$

where,
$n=$ number of observations

$$
\begin{aligned}
& x-a=d \\
& u_{1}^{\prime}=\text { First moment about } a=\frac{\sum d}{n} \\
& u_{2}^{\prime}=\text { Second moment about } a=\frac{\sum d^{2}}{n} \\
& u_{3}^{\prime}=\text { Third moment about } a=\frac{\Sigma d^{3}}{n} \\
& u_{4}^{\prime}=\text { Fourth moment about } a=\frac{\sum d^{4}}{n}
\end{aligned}
$$

Discrete Series:

$$
l_{r}^{\prime}=\frac{\sum f(x-q)^{r}}{N}=\frac{\sum f d^{r}}{N}
$$

$$
\begin{aligned}
& u_{1}^{\prime}=\text { First moment about } a=\frac{\sum f d}{N} \\
& u_{2}^{\prime}=\text { Second moment about } a=\frac{\sum f d^{2}}{N} \\
& u_{3}^{\prime}=\text { Third moment about } a=\frac{\sum f d^{3}}{N} \\
& u_{4}^{\prime}=\text { Fourth moment about } a=\frac{\sum f d^{4}}{N}
\end{aligned}
$$

Continuous series:

$$
\mu_{r}^{\prime}=\frac{\Sigma f(x-q)^{2}}{N} \times h^{r}=\frac{\Sigma f d^{\prime r}}{N} \times h^{r}
$$

where.

$$
d^{\prime}=\frac{x-q}{h}, h=\text { common factor }
$$

$\mu_{1}^{\prime}=$ First moment about $a=\frac{\Sigma f d^{\prime}}{N} \times h$

$$
\mu_{2}^{\prime}=\text { second moment about } a=\frac{\Sigma f d^{2}}{N} \times h^{2}
$$

$$
\mu_{3}^{\prime}=\text { Third moment about } a=\frac{\Sigma f d^{\prime 3}}{N} \times h^{3}
$$

$l_{4}^{\prime}=$ Fourth moment about $a=\frac{\varepsilon f d^{4}}{N} \times h^{4}$

* Relation between central moments and raw moments:

$$
\begin{aligned}
& \mu_{1}=\mu_{1}^{\prime}-\mu_{1}^{\prime}=0 \\
& \mu_{2}=\mu_{2}^{\prime}-\mu_{1}^{2} \\
& \mu_{3}=\mu_{3}^{\prime}-3 \cdot \mu_{2}^{\prime} \cdot \mu_{1}^{\prime}+2 \mu_{2}^{3} \\
& \mu_{4}=\mu_{4}^{\prime}-4 \mu_{3}^{\prime} \cdot \mu_{1}^{\prime}+6 \mu_{2}^{\prime} \cdot \mu_{1}^{\prime 2}-3 \mu_{1}^{4}
\end{aligned}
$$

Note: μ_{2} is also known as variance $\left(\mu_{2}=\sigma^{2}\right)$

* Kurtosis

Besides centeral tendency, dispersion and skewness, the fourth characteristic of the frequency distribution ifs the kurtosis. Kurtosis indicates the peakedness of the distribution. In statistics kurtosis refers to the degree of peakedness or flatness of a distribution compared to a normal distribution

Measure of kurtosis:
Kurtosis is measured by the coefficient of kurtosis. The simple measure of kurtosis based on both quartiles and percentiles is percentile coefficient of kurtosis.

$$
K=\frac{\frac{1}{2}\left(Q_{3}-Q_{1}\right)}{P_{90}-P_{10}}
$$

where.

$$
\begin{aligned}
& Q_{3}=\text { upper } \text { Quartile } \\
& Q_{1}=\text { Lower Quartile } \\
& P_{90}=90^{\text {th }} \text { Percentile } \\
& P_{10}=10^{\text {th }} \text { Percentile }
\end{aligned}
$$

Test for kurtosis:
a. When $k=0.263$, the distribution is mesokurtic (normal)
b. When $k>0.263$, the distribution is leptokurtic (more peaked)
c. When $k<0.263$, the distribution is platykurtic (flat topped)

* Coefficient of skewness and kurtosis Based on Moments:

The relative measure of skewness based on moments, denoted by Beta one. β_{1}, is given by

$$
\beta_{1}=\frac{\mu_{3}^{2}}{\mu_{2}^{3}}
$$

Bishwo Sir Notes 9851214642
Where, H_{3} : Third central moment
$\mu_{2}=$ second central moment

The alternative relative measure of skewness based on moments. denoted by gamma one $\left(r_{1}\right)$ is given by.

$$
\begin{aligned}
r_{1} & =\sqrt{\beta_{1}} \\
& =\sqrt{\frac{\mu_{3}^{2}}{\mu_{2}^{3}}}=\frac{\mu_{3}}{\mu_{2}^{3 / 2}}
\end{aligned}
$$

Interpretation:
If $\mu_{3}=0$ i.e $\beta_{1}=0$ or $Y_{1}=0$, the distribution is symmetrical. If $\mu_{3}>0$ i.e $Y_{1}>0$, the distribution is positively skewed. if $\mu_{3}<0$ ie $Y_{1}<0$, the distribution is negatively skewed.

The relative measure of kurtosis based on moments is given by the coefficient. β_{2} or γ_{2} defined by Karl Pearson

$$
\beta_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}, \gamma_{2}=\beta_{2}-3
$$

Interpretation:
If $\beta_{2}=3$, or $\gamma_{2}=0$, the distribution is mesokurtic.
If $\beta_{2}>3$, or $Y_{2}>0$, the distribution is leptokartic If $\beta_{2}<3$. or $\gamma_{2}<0$, the distribution is platykurtic.

$$
\text { karl-Pearsor's coefficient of skewness. } S_{k}(P)=\frac{\vec{x}-M_{0}}{\sigma}
$$

Calculation of Mean
$\operatorname{Mean}(\bar{x})=A+\frac{\sum f d^{\prime}}{N} \times h$
$=85+\frac{(-30)}{169} \times 10$
$=$ Rs. 83.22
Calculation of standard deviation

$$
\text { Standard Deviation } \begin{aligned}
(\sigma) & =\sqrt{\frac{\sum f d^{\prime 2}}{N}-\left(\frac{\sum f d^{\prime}}{N}\right)^{2} \times h} \\
& =\sqrt{\frac{718}{169}-\left(\frac{-30}{169}\right)^{2}} \times 10 \\
& =20.54
\end{aligned}
$$

Calculation of Mode
Since the highest frequency is 35 . the modal class is 80-90. So.

We have.

$$
L=80, f_{1}=35, \quad f_{0}=28, f_{2}=25, \quad h=10
$$

$$
\begin{aligned}
\operatorname{Mode}\left(M_{0}\right) & =L+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h \\
& =80+\frac{35-28}{2 \times 35-28-25} \times 10 \\
& =84.12
\end{aligned}
$$

Now.

$$
S_{k}(P)=\frac{\bar{x}-M_{0}}{\sigma}=\frac{83.22-84.12}{20.54}=-0.04
$$

Since, $s_{k}(p)=-0.04<0$, the given distribution is negatively skewed.
$20612^{\text {nd }}$ Q.N.U
SOn
Calculation of quartile values

Daily wages (Rs.)	No. of workers (f)	C.f
Below 100	20	20
$100-150$	81	101
$150-300$	120	221
$300-500$	150	371
$500-1000$	130	501
$1000-1500$	30	531
$1500-2000$	10	541
Above 2000	5	546
	$N=\Sigma f=546$	

We know that.
Coefficient of skewness based on Quartile value is Bowley's coefficient of skewness. So.

$$
S_{k}(B)=\frac{Q_{3}+Q_{1}-2 M_{d}}{Q_{3}-Q_{1}}
$$

Calculation of Q_{L}

$$
\frac{N}{4}=\frac{546}{4}=136.5 \text {. The c.f just greater than } 136.5
$$ is 221 which lies in class 150-300.

We have.

$$
L=150, \quad f=120, \quad c \cdot f=101, \quad h=150
$$

$$
\begin{aligned}
Q_{1} & =L+\frac{N / 4-c \cdot f}{f} \times h \\
& =150+\frac{136 \cdot 5-101}{120} \times 150 \\
& =194.375
\end{aligned}
$$

calculation of Q_{3}

$$
\frac{3 N}{4}=\frac{3 \times 546}{4}=409.5 \text {. The c.f just greater than } 409.5
$$

is 501 which lies in class 500-1000.
We have.

$$
\begin{aligned}
& L=500, \quad f=130 . c \cdot f=371 . \quad h=500 \\
& Q_{3}=L+\frac{\frac{3 N}{4}-c \cdot f}{f} \times h \\
&=500+\frac{409 \cdot 5-371}{130} \times 500 \\
&=648.076
\end{aligned}
$$

calculation of Median (Md)

$$
\frac{N}{2}=\frac{546}{2}=273 \text {. Thec.f. just greater than } 273 \text { is } 371
$$ which lies in class $300-500$.

We have.

$$
L=300, f=150, c \cdot f=221, \quad h=200
$$

$$
\begin{aligned}
M_{d} & =L+\frac{N / 2-c \cdot f}{f} \times h \\
& =300+\frac{273-221}{150} \times 200
\end{aligned}
$$

$$
=369.33
$$

Now,

$$
\begin{aligned}
S_{k}(B) & =\frac{Q_{3}+Q_{1}-2 M_{d}}{Q_{3}-Q_{1}} \\
& =\frac{648.076+194.375-2 \times 369.33}{648.076-194.375} \\
& =0.22
\end{aligned}
$$

Since, $S_{k}(B)=0.22>0$, the distribution is positively skewed.
;
2058. Q. NO. 6

SOOn. Since, mid -value is given we should find their classes.
Calculation of Mean. Mode and Standard Deviation

Complete Yourself as Question No. 2076 Q.N. 16

$\operatorname{Mean}(\bar{x})=\frac{\Sigma f x}{N}=\frac{125}{25}=5$

- calculation of first four moments about mean (central moments)
$\mu_{1}=\frac{\sum f x}{N}=\frac{0}{25}=0$
$\mu_{2}=\frac{\sum f x^{2}}{N}=\frac{136}{25}=5.44$
$M_{3}=\frac{\sum f x^{3}}{N}=\frac{0}{25}=0$ Bishwo sir Notes
9851214642
$\mu_{4}=\frac{\sum f x^{4}}{N}=\frac{1696}{25}=67.84$

For skewness

$$
\beta_{1}=\frac{\left(\mu_{3}\right)^{2}}{\left(\mu_{2}\right)^{3}}=\frac{0}{(5.44)^{3}}=0
$$

Since, $B_{1}=0$. the given distribution is symmetrical.
For kurtosis

$$
\beta_{2}=\frac{\mu_{4}}{\left(\mu_{2}\right)^{2}}=\frac{\theta 7.84}{(5.44)^{2}}=2.29
$$

Since, $\beta_{2}=2.29<3$, the given distribution is platykuric. 2072 Old $Q \cdot N \cdot 8$

SO In
Calculation of mean, variance and skewness

For Mean

$$
\operatorname{Mean}(\bar{x})=\frac{\Sigma f x}{N}=\frac{750}{30}=25
$$

Calculation of first four. moments about Mean (central moments)

$$
\begin{aligned}
\mu_{1} & =\frac{\sum+x}{N}=\frac{0}{30}=0 \\
\mu_{2} & =\frac{\Sigma f x^{2}}{N}=\frac{4400}{30}=146.67 \\
\mu_{3} & =\frac{\sum f x^{3}}{N}=\frac{0}{30}=0 \\
\mu_{4} & =\frac{\Sigma f x^{4}}{N}=\frac{1400,000}{30}=46666.67 \\
\text { Variance } & =\mu_{2}=146.67
\end{aligned}
$$

For skewness

$$
\beta_{1}=\frac{\left(\mu_{3}\right)^{2}}{\left(\mu_{2}\right)^{3}}=\frac{0}{(146.67)^{3}}=0
$$

Since. $\beta_{1}=0$, the given distribution is symmetrical.

Analytical Answer Question:
2074 old Q.N.11
So In
calculation of skewness and kurtosis

wages Per	No. of workers	Mid-value	$d^{\prime}=\frac{x-70}{20}$	$f d^{\prime}$	$f d^{\prime 2}$	$f d^{\prime 3}$	$f d^{\prime}$
hour $(R \cdot)$	(f)	(x)	d^{\prime}				
$0-20$	5	10	-3	-15	45	-135	405
$20-40$	7	30	-2	-14	28	-56	112
$40-60$	16	50	-1	-16	16	-16	16
$60-80$	20	$4=70$	0	0	0	0	0
$80-100$	28	90	1	28	28	28	28
$100-120$	12	110	2	24	48	96	192
$120-140$	10	130	3	30	90	270	810
$140-160$	2	150	4	8	32	128	512
	$N=\Sigma f=100$			$\Sigma f d^{\prime}$	$\sum f d^{\prime 2}$	$\sum f d^{\prime 3}$	$\Sigma f d^{\prime 4}$

calculation of First Raw moments

$$
\mu_{1}^{\prime}=\frac{\Sigma f d^{\prime}}{N} \times h=\frac{45}{100} \times 20=9
$$

$$
\mu_{2}^{\prime}=\frac{\sum f d^{\prime}}{N} \times h^{2}=\frac{287}{100} \times(20)^{2}=1148
$$

$$
U_{3}^{\prime}=\frac{\sum f d^{1}}{N} \times h^{3}=\frac{315}{100} \times(20)^{3}=25.200
$$

$$
u_{4}^{\prime}=\frac{\sum f d^{\prime}}{14} \times(h)^{4}=\frac{2075}{100} \times(20)^{4}=3320000
$$

Calculation of central moments

$$
\begin{aligned}
\mu_{1} & =\mu_{1}^{\prime}-\mu_{1}^{\prime}=9-9=0 \\
\mu_{2} & =\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2} \\
& =1148-(9)^{2} \\
& =1067 \\
\mu_{3} & =\mu_{3}^{\prime}-3 \cdot \mu_{2}^{\prime} \cdot \mu_{1}^{\prime}+2\left(\mu_{1}^{\prime}\right)^{3} \\
& =25,200-3 \times 148 \times 9+2 \times(9)^{3} \\
& =-4,338 \\
u_{4} & =\mu_{4}^{\prime}-4 \cdot \mu_{3}^{\prime} \cdot \mu_{1}^{\prime}+6 \cdot \mu_{2}^{\prime} \cdot\left(\mu_{1}^{\prime}\right)^{2}-3 \cdot\left(\mu_{1}^{\prime}\right)^{4} \\
& =33,20,000-4 \times 25200 \times 9+6 \times 1148 \times(9)^{2}-3 \times(9)^{4} \\
& =2951,045
\end{aligned}
$$

For skewness

$$
\beta_{1}=\frac{\left(\mu_{3}\right)^{2}}{\left(\mu_{2}\right)^{3}}=\frac{(-4338)^{2}}{(1067)^{3}}=0.0155
$$

since, $\mu_{3}<0$, the given distribution is negatively skewed.
For Kurtosis

$$
\beta_{2}=\frac{\mu_{4}}{\left(\mu_{2}\right)^{2}}=\frac{2951.045}{(9067)^{2}}=2.5921
$$

Since. $\beta_{2}=2.5921<3$, the given distribution is platykurtic.

2073 Q.N0. 17
Sol
9. calculation of frequency distribution

Number of customers $(N)=50$
Minimum waiting time $\left(X_{s}\right)=17$
Maximum waiting time $\left(X_{L}\right)=72$
Number of classes. $k=7$
Using struge's rule: we have.

$$
\begin{aligned}
\text { class size, } h=\frac{\text { Range }}{\text { Number of classes }}=\frac{X_{L}-X_{S}}{7} & =\frac{72-17}{7} \\
& =7.85=10
\end{aligned}
$$

First class $=10-20$
Last Class $=70-80$
Calculation of Frequency distribution

Waiting Time	Tally bars	Number of customers (f)
$10-20$	$H 11$	3
$20-30$	$H H H H H 1$	11
$30-40$	$H H H H 11$	12
$40-50$	$H H 1 H 1111$	13
$50-60$	$H H 1$	6
$60-70$	1111	4
$70-80$	1	$N=\Sigma f=50$

b.

Calculation of skewness and kurtosis

Waiting Time	No. of Custo- mors (f)	Value (x)	$d^{\prime}=\frac{x-45}{10}$	$f d^{\prime}$	$f d^{\prime 2}$	$f d^{\prime 3}$	$f d^{\prime}$
$10-20$	3	15	-3	-9	27	-81	243
$20-30$	11	25	-2	-22	44	-88	176
$30-40$	12	35	-1	-12	12	-12	12
$40-50$	13	$A=45$	0	0	0	0	0
$50-60$	6	55	1	6	6	6	6
$60-70$	4	65	2	8	16	32	64
$70-80$	1	75	3	3	9	27	81
	$N=\Sigma f$			$\sum f d^{\prime}$	$\sum f d^{\prime 2}$	$\sum f d^{\prime 3}$	$\sum f d^{\prime 4}$
	$=50$			$=-26$	$=114$	-116	$=582$

Calculation of Raw moments

$$
\begin{aligned}
& \mu_{1}^{\prime}=\frac{\sum f d^{\prime}}{N} \times h=\frac{-26}{50} \times 10=-52 \\
& \mu_{2}^{\prime}=\frac{\sum f d^{2}}{N} \times h^{2}=\frac{114}{50} \times(10)^{2}=228 \\
& \mu_{3}^{\prime}=\frac{\sum f d^{3}}{N} \times h^{3}=\frac{-116}{50} \times(10)^{3}=-2320 \\
& \mu_{4}^{\prime}=\frac{\sum f d^{4}}{N} \times h^{4}=\frac{582}{50} \times(10)^{4}=116400
\end{aligned}
$$

Calculation of central moments

$$
\begin{aligned}
\mu_{1} & =\mu_{1}^{\prime}-\mu_{1}^{\prime} \\
& =-5.2-(-5.2)=0 \\
\mu_{2} & =\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2} \\
& =228-(-5.2)^{2} \\
& =200.96
\end{aligned}
$$

$$
\begin{aligned}
\mu_{3} & =\mu_{3}^{\prime}-3 \cdot \mu_{2}^{\prime} \cdot \mu_{1}^{\prime}+2 \cdot\left(\mu_{2}^{\prime}\right)^{3} \\
& =-2320-3 \times 228 \times(-5.2)+2 \times(-5.2)^{3} \\
& =955.58
\end{aligned}
$$

$$
\begin{aligned}
\mu_{u} & =\mu_{4}^{\prime}-4 \cdot \mu_{3}^{\prime} \cdot \mu_{1}^{\prime}+6 \cdot \mu_{2}^{\prime} \cdot\left(\mu_{1}^{\prime}\right)^{2}-3 \cdot\left(\mu_{1}^{\prime}\right)^{4} \\
& =116400-4 \times(-2320) \times(-5 \cdot 2)+6 \times 228 \times(-5 \cdot 2)^{2}-3 \times(-5 \cdot 2)^{4} \\
& =102941 \cdot 24
\end{aligned}
$$

For skewness:

$$
\beta_{1}=\frac{\left(\mu_{3}\right)^{2}}{\left(\mu_{2}\right)^{3}}=\frac{(955.58)^{2}}{(200.96)^{3}}=0.1125
$$

$\because \mu_{3}>0$, the given distribution is positively skewed.
For kurtosis:

$$
\beta_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}=\frac{102.941 .24}{(200.96)^{2}}=2.549
$$

$\because \beta_{2}=2.549<3$, the given distribution is platykurtic

2071 Q.N. 19
SOl?
i. Calculation of skewness and kurtosis by using moment

Assets	No. of listed	Mid -	$d^{\prime}=\frac{x-17.5}{5}$	$f d^{\prime}$	$f d^{2}$	$f d^{3}$	${f d^{\prime}}^{\prime}$
(inmiuion)	Companies (f)	Value (x)	d^{\prime}				
$0-5$	20	2.5	-3	-60	180	-540	1620
$5-10$	25	7.5	-2	-50	100	-200	400
$10-15$	50	12.5	-1	-50	50	-50	50
$15-20$	40	$A=17.5$	0	0	0	0	0
$20-25$	20	22.5	1	20	20	20	20
$25-30$	15	27.5	2	30	60	120	240
	$N=\Sigma f$			$\Sigma f d^{\prime}$	$\sum f d^{\prime 2}$	$\sum f d^{\prime 3}$	$\sum f d^{4}$
	$=170$			$=-110$	$=410$	$=-650$	$=2330$

calculation of Raw moments

$$
\begin{aligned}
& \mu_{1}^{\prime}=\frac{\sum f d^{\prime}}{N} \times h=\frac{-110}{170} \times 5=-3.24 \\
& \mu_{2}^{\prime}=\frac{\sum f d^{\prime}}{N} \times h^{2}=\frac{410}{170} \times(5)^{2}=60.29 \\
& \mu_{3}^{1}=\frac{\sum f d^{3}}{N} \times h^{3}=\frac{-650}{170} \times(5)^{3}=-477.94 \\
& \mu_{4}^{\prime}=\frac{\sum f d^{4}}{N} \times h^{4}=\frac{2330}{170} \times(5)^{4}=8566.18
\end{aligned}
$$

Calculation of central moments

$$
\begin{aligned}
l_{1} & =\mu_{1}^{\prime}-\mu_{1}^{\prime} \\
& =-3.24-(-3.24)=0 \\
\mu_{2} & =\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2} \\
& =60.29-(-3.24)^{2} \\
& =49.79 \\
\mu_{3} & =\mu_{3}^{\prime}-3 . \mu_{2}^{\prime} \cdot \mu_{1}^{\prime}+2 \cdot\left(\mu_{1}^{\prime}\right)^{3} \\
& =-477.94-3 \times 60.29 \times(-3.24)+2 \times(-3.24)^{3} \\
& =40.05 \\
l_{4} & =\mu_{4}^{\prime}-4 . \mu_{3}^{\prime} \cdot \mu_{1}^{\prime}+6 . \mu_{2}^{\prime} \cdot\left(\mu_{1}^{1}\right)^{2} \cdot-3 \cdot\left(\mu_{1}^{\prime}\right)^{4} \\
& =8566.18-4 \times(-477.94) \times(-3.24)+6 \times 60.29 \times(-3.24)^{2}- \\
& =5838.88
\end{aligned}
$$

For skewness

$$
\beta_{1}=\frac{\left(\mu_{3}\right)^{2}}{\left(\mu_{2}\right)^{3}}=\frac{(40.05)^{2}}{(49.79)^{3}}=0.0130
$$

Since, $\beta_{1}=0.0130>0$, the given clistribution is positively skewed.
For kurtosis

$$
\beta_{2}=\frac{\mu_{4}}{\left(\mu_{2}\right)^{2}}=\frac{5838.88}{(49.79)^{2}}=2.35
$$

Since, $\beta_{2}=2.35<3$, the given distribution is platykuroic.
calculation of coefficient of variation (c.v)

$$
\begin{aligned}
\operatorname{Mean}(\bar{x}) & =A+\frac{\sum f d^{\prime}}{N} \times h \\
& =A+\mu_{1}^{\prime} \\
& =17.5+(-3.24) \\
& =14.26
\end{aligned}
$$

Variance $=\mu_{2}$

$$
\begin{aligned}
\therefore \text { Standard Deviation }(\sigma) & =\sqrt{\mu / 2} \\
& =\sqrt{49.79} \\
& =7.0562
\end{aligned}
$$

$$
\text { Coefficient of variation } \begin{aligned}
& =\frac{\sigma}{\bar{x}} \times 100 \\
& =\frac{7.0562}{14.26} \times 100 \\
& =49.48 \%
\end{aligned}
$$

2075 Q.N. 12
SOl
Given: The raw moments of value a are:

$$
A=5, l_{1}^{\prime}=2, \mu_{2}^{\prime}=20, \mu_{3}^{\prime}=40, \mu_{4}^{\prime}=50
$$

Calculation of central moments

$$
\begin{aligned}
\mu_{1} & =\mu_{1}^{\prime}-\mu_{1}^{\prime} \\
& =2-2=0
\end{aligned}
$$

$$
\begin{aligned}
\mu_{2} & =\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2} \\
& =20-(2)^{2} \\
& =16
\end{aligned}
$$

$$
\begin{aligned}
\mu_{3} & =\mu_{3}^{1}-3 \cdot l_{2}^{1} \cdot l_{1}^{1}+2 \cdot\left(\mu_{1}^{1}\right)^{3} \\
& =40-3 \times 20 \times 2+2 \times(2)^{3} \\
& =-64
\end{aligned}
$$

$$
\begin{aligned}
\mu_{u} & =\mu_{4}^{\prime}-4 \cdot \mu_{3}^{1} \cdot \mu_{1}^{\prime}+6 \cdot \mu_{2}^{\prime} \cdot\left(\mu_{1}^{\prime}\right)^{2}-3\left(\mu_{1}^{\prime}\right)^{4} \\
& =50-4 \times 40 \times 2+6 \times 20 \times(2)^{2}-3 \times(2)^{4} \\
& =162
\end{aligned}
$$

For Mean:

$$
\operatorname{Mean}(\bar{x})=A+u_{1}^{\prime}=5+2=7
$$

For standard Deviation:
Standard Deviation $(\sigma)=\sqrt{\mu_{2}}=\sqrt{16}=4$

For skewness:

$$
\beta_{1}=\frac{\left(\mu_{3}\right)^{2}}{\left(\mu_{2}\right)^{3}}=\frac{(-64)^{2}}{(16)^{3}}=1
$$

Since. $l_{3}=-64<0$, the given distribution is negatively skewed.
For kur-losis:

$$
\beta_{2}=\frac{\mu_{4}}{\left(\mu_{2}\right)^{2}}=\frac{162}{(16)^{2}}=0.633
$$

Since, $\beta_{2}=0.633<3$, the distribution is platykurtic.
2074 Q.N. 16
SQ ${ }^{n}$
Given:

$$
\begin{array}{r}
N=100, \sum f d x=-14, \quad \sum f d^{2} x=154, \quad \sum f d^{3} x=-62 \\
\sum f d^{4} x=490
\end{array}
$$

Calculation of first raw moments:

$$
\begin{aligned}
& \mu_{1}^{\prime}=\frac{\sum f d x}{N}=\frac{-14}{100}=-0.44 \\
& \mu_{2}^{\prime}=\frac{\sum f d^{2} x}{N}=\frac{154}{100}=154 \\
& \mu_{3}^{\prime}=\frac{\sum f d^{3} x}{N}=\frac{-62}{100}=-0.62 \\
& \mu_{4}^{\prime}=\frac{\sum f d^{4} x}{N}=\frac{490}{100}=4.9
\end{aligned}
$$

Calculation of first four central moments

$$
\begin{aligned}
\mu_{1} & =\mu_{1}^{\prime}-\mu_{1}^{\prime} \\
& =-0.14-(-0.14) \\
& =0 \\
\mu_{2} & =\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2} \\
& =1.54-(-0.14)^{2} \\
& =1.5204 \\
\mu_{3} & =\mu_{3}^{\prime}-3 . \mu_{2}^{\prime} \cdot \mu_{1}^{\prime}+2\left(\mu_{1}^{\prime}\right)^{3} \\
& =-0.62-3 \times 1.54 \times(-0.14)+2 \times(-0.14)^{3} \\
& =0.021312 \\
\mu_{4} & \left.=\mu_{4}^{\prime}-4 . \mu_{3}^{\prime} \cdot \mu_{1}^{\prime}+6 . \mu_{2}^{\prime}\left(\mu_{1}^{\prime}\right)^{2}-3 . \mu_{1}^{\prime}\right)^{4} \\
& =4.9-4 \times(-0.62) \times(-0.44)+6 \times 1.54 \times\left(-0 . u_{1}\right)^{2}-3 \times(-0.44)^{4} \\
& =4.73275152
\end{aligned}
$$

For skewness:

$$
B_{1}=\frac{\left(\mu_{3}\right)^{2}}{\left(\mu_{2}\right)^{3}}=\frac{(0.021312)^{2}}{(1.5204)^{3}}=0.0001
$$

Hence, the given distribution is approximately symmetrical.
For kurtosis:

$$
\beta_{2}=\frac{\mu_{4}}{\left(\mu_{2}\right)^{2}}=\frac{4.73275152}{(1.5204)^{2}}=2.047
$$

Since, $\beta_{2}=2.047<3$, the given distribution is platypurtic.

$$
2075 \text { Q.N. } 13
$$

So ln
Arrange the data in ascending order

$$
11,15,15,17,20,21,22,23,25,29,29
$$

We have.
Smallest value $\left(x_{s}\right)=1 L$
Largest value $\left(x_{L}\right)=29$

$$
N=11
$$

For Q_{1}

$$
\begin{aligned}
Q_{1} & =\text { value of }\left(\frac{N+1}{4}\right)^{\text {th }} \text { item } \\
& =\text { value of }\left(\frac{1+1}{4}\right)^{\text {th }} \text { item } \\
& =\text { value of } 3^{\text {rd }} \text { item } \\
& =15
\end{aligned}
$$

For Median:

$$
\begin{aligned}
M_{d} & =\text { value of }\left(\frac{N+1}{2}\right)^{\text {th }} \text { item } \\
& =\text { value of }\left(\frac{11+1}{2}\right)^{\text {th }} \text { item } \\
& =\text { value of } 6^{\text {th }} \text { item } \\
& =21
\end{aligned}
$$

For Q_{3}

$$
Q_{3}=\text { value of }\left(\frac{3(N+1)}{4}\right)^{\text {th }} \text { item }
$$

$$
\begin{aligned}
& =\text { value of }\left(\frac{3(11+1)}{4}\right)^{\text {th }} \text { item } \\
& =\text { value of } 9^{\text {th }} \text { item } \\
& =25
\end{aligned}
$$

Five Number summary is

X_{S}	Q_{1}	M_{d}	Q_{3}	X_{L}
11	15	21	25	29

Box-and-whisker plot

Since, the left side erlondonit is longer, SO it is negatively
skewed. 2072 (ii) Q.N0. 13 SOl"

Arrange the given data in ascending order

$$
\begin{array}{r}
264,266,298,317,342,426,451,492,512.545 . \\
562,631,1049
\end{array}
$$

We have.

$$
N=13
$$

Smallest value $\left(x_{s}\right)=264$
Largest value $\left(X_{L}\right)=1049$

For Q_{1} :

$$
\begin{aligned}
Q_{1} & =\text { value of }\left(\frac{N+1}{4}\right)^{\text {th }} \text { item } \\
& =\text { value of }\left(\frac{13+1}{4}\right)^{\text {th }} \text { item } \\
& =\text { value of } 3.5 \text { th } \text { item } \\
& =3^{\text {rd }} \text { item }+0.5\left(4^{\text {th }} \text { item }-3^{\text {rd }} \text { item }\right) \\
& =298+0.5(317-298) \\
& =307.5
\end{aligned}
$$

For Median:

$$
\begin{aligned}
M_{d} & =\text { value of }\left(\frac{N+1}{2}\right)^{\text {th }} \text { item } \\
& =\text { value of }\left(\frac{13+1}{2}\right)^{\text {th }} \text { item } \\
& =\text { value of } 7^{\text {th }} \mathrm{item} \\
& =451
\end{aligned}
$$

For Q_{3} :

$$
\begin{aligned}
Q_{3} & =\text { value of }\left(\frac{3(N+1)}{4}\right)^{\text {th }} \text { item } \\
& =\text { value of }\left(\frac{3(13+1)}{4}\right)^{\text {th }} \text { item } \\
& =\text { value of } 10.5^{\text {th }} \text { item } \\
& =10^{\text {th }} \text { item }+0.5\left(11^{\text {th }} \text { item -10 th item }\right) \\
& =545+0.5(562-545) \\
& =553.5
\end{aligned}
$$

Five number summand:

c. Yes. the data are positevely skewed since it has longer tail on right side than that of left whisker.

2071 old Q.N0. 5
Son
Given:
(1) Pearson's coefficient of skewness. $S_{k}(P)=0.4$ Coefficient of variation ($(\mathrm{CV})=30 \%$

$$
\text { Mode }\left(M_{0}\right)=88
$$

Mean $(\bar{x})=$?
Median $(M d)=$?
Here.

$$
\begin{array}{c|c}
S_{k}(P)=\frac{\text { Mean-Mode }}{S \cdot D} & C V=\frac{\sigma}{\bar{x}} \times 100 \\
0.4=\frac{\bar{x}-88}{0.3 \bar{x}} & \frac{30}{100}=\frac{6}{\bar{x}} \\
0.12 \bar{x}=\bar{x}-88 & \therefore \bar{x}=0.3 \bar{x}
\end{array}
$$

Using empirical relationship, we have.

$$
\begin{aligned}
& M_{0}=3 M_{d}-2 \bar{x} \\
& 88=3 M_{d}-2 \times 100 \\
& 3 M_{d}=288 \\
& \therefore M_{d}=\frac{288}{3}=96
\end{aligned}
$$

Here. The value of mean and median are 100 and 96 respectively.
(2) Given:

$$
\begin{aligned}
& A=4, \quad \mu_{1}^{\prime}=1, \mu_{2}^{\prime}=4, \mu_{3}^{\prime}=10 \\
& \text { Mean }(\bar{x})=A+\mu_{1}^{\prime}=4+1=5 \\
& \text { Variance }(\sigma)^{2}=\mu_{2}=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2} \\
&=4-(1)^{2} \\
&=3
\end{aligned}
$$

Third moment about mean

$$
\begin{aligned}
\mu_{3} & =\mu_{3}^{1}-3 \cdot \mu_{2}^{1} \cdot \mu_{1}^{1}+2 \cdot\left(\mu_{1}^{1}\right)^{3} \\
& =10-3 \times 4 \times 1+2 \times(1)^{3} \\
& =10-12+2 \\
& =0
\end{aligned}
$$

Hence. the Value of mean, Variance and third moment about mean are 5,3 and 0 respectively.

2070 Q.N.10 (1)
Sol?
Given:
Standard deration of a symmetrical distribution $(\sigma)=4$
Fourth moment. about mean. $\left(\mu_{4}\right)=$?
We know that.

$$
\text { variance }=\mu_{2}=(\sigma)^{2}=(4)^{2}=16
$$

i. The distribution will be platykurtic if

$$
\begin{aligned}
& \beta_{2}<3 \\
& \frac{\mu_{4}}{\left(\mu_{2}\right)^{2}}<3 \\
& \frac{\mu_{4}}{(16)^{2}}<3 \\
& \mu_{4}<768
\end{aligned}
$$

\therefore The value of fourth mount about mean should be less than 768 in order that the distribution is piatykurtic.
Li. The distribution will be leptokurtic if

$$
\begin{aligned}
& \beta_{2}>3 \\
& \frac{\mu_{4}}{\left(\mu_{2}\right)^{2}}>3 \\
& \frac{\mu_{4}}{(16)^{2}}>3 \\
& \therefore \mu_{4}>768
\end{aligned}
$$

\therefore The value of fourth moment about mean should be greater than 768, in order that the distribution is reptokurtic.

2065 Q.N0. 3
SOl?
Cal" of Mean. Mode and standard Deviation

Size in Inches	No. of Observations (f)	Mid-Value (x)	$d^{\prime}=\frac{x-37 \cdot 5}{3}$	$f d^{\prime}$	${f d^{\prime}}^{2}$
$30-33$	3	31.5	-2	-6	12
$33-36$	5	34.5	-1	-5	5
$36-39$	$26 f_{0}$	$A=37.5$	0	0	0
$39-42$	$46 \rightarrow f_{1}$	40.5	1	46	46
$42-45$	$20 \rightarrow f_{2}$	43.5	2	40	80
$45-48$	10	46.5	3	30	90
	$N=\Sigma f=110$			$\sum f d^{\prime}=105$	$\sum f d^{\prime 2}=233$

For Mean:

$$
\begin{aligned}
\operatorname{Mean}(\bar{x}) & =A+\frac{\sum f d^{\prime}}{N} \times h \\
& =37.5+\frac{105}{110} \times 3 \\
& =40.364
\end{aligned}
$$

For Mode.
Since, the highest frequency is 46 , the modal class is $39-42$. So.

$$
L=39, \quad f_{1}=46, \quad f_{0}=26, \quad f_{2}=20, h=3
$$

line have,

$$
M_{0}=L+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h
$$

$$
\begin{aligned}
& =39+\frac{46-26}{2 \times 46-26-20} \times 3 \\
& =40.304
\end{aligned}
$$

For standard Deviation:

$$
\begin{aligned}
\text { Standard Deviation }(r) & =\sqrt{\frac{\sum f d^{\prime 2}}{N}-\left(\frac{\sum f d^{\prime}}{N}\right)^{2}} \times h \\
& =\sqrt{\frac{233}{110}-\left(\frac{105}{110}\right)^{2}} \times 3 \\
& =3.295
\end{aligned}
$$

Pearson's Measure of skewness:

$$
\begin{aligned}
S_{k}(P) & =\frac{\bar{x}-M_{0}}{\sigma} \\
& =\frac{40.364-40.304}{3.295} \\
& =0.018
\end{aligned}
$$

Since, $S_{k}(p)=0.018>0$, the given distribution is positively skewed.

2070: Q. NO. 10 b
Sol
Arbitary value $(A)=4$
Frost four raw moments $=\mu_{1}^{\prime}=1, \mu_{2}^{\prime}=3, \mu_{3}^{\prime}=7, l_{4}^{\prime}=21$
Central moments:

$$
\begin{aligned}
\mu_{1} & =\mu_{2}^{\prime}-\mu_{1}^{1}=0 \\
\mu_{2} & =\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2} \\
& =3-(1)^{2}=2
\end{aligned}
$$

Now,

$$
\operatorname{Mean}(\bar{x})=4+l_{1}^{\prime}=4+1=5
$$

$$
\text { Standard Deviation }(\sigma)=\sqrt{\mu_{2}}=\sqrt{2}=1.41
$$

$$
2068 Q \cdot N 0.7
$$

SO ${ }^{7}$
Given:
Karl pearson's coefficient of skewness $=0.5$

$$
\begin{aligned}
& \text { Median }=42 \\
& \text { Mode }=36
\end{aligned}
$$

Here.

$$
\begin{aligned}
S_{K}(P) & =\frac{\bar{x}-M_{0}}{\sigma} \\
0.5 & =\frac{45-.36}{\sigma} \\
\therefore \sigma & =18
\end{aligned}
$$

$$
\begin{aligned}
& M_{0}=3 M_{d}-2 \bar{x} \\
& 36=3 \times 42-2 \bar{x} \\
& \therefore \bar{x}=45
\end{aligned}
$$

Coefficient of Variation

$$
\begin{aligned}
c v=\frac{\sigma}{\bar{x}} \times 100 & =\frac{18}{45} \times 100 \\
& =40 \%
\end{aligned}
$$

