Skewness, Kurtosis, and Moments

BBS 1st Year

skewness, Kurtosis and Moments

- > The lack of symmetry of a distribution is called skewness.
- > 9t relates to the shape but not the size of a frequency curve.
- + A distribution which is not symmetrical (same) is said to be skewed. So, skewness is the lack of symmetry.
- -> Generally. there are 100 types of skewness.

 a. Positive skewness

 b. Negative skewness

a. Positive skewness

of the frequency distribution has a longer tail on the kight.

Mean > Median > Mode

b. Negative skewness 1997 1 888
skewness is said to be negative if the curve of
the frequency distribution is elongated more on the left
than the right.
atte tack of sammation of the latter and doctor
The secretary to the secretary to the secretary to the terms of
CERT COUNTY OF THE PROPERTY OF
himsel (number of Monta Monta de Monta
Mean < Median < Mode
TO CONTRACT OF THE PARTY OF THE
Zero skewness / symmetrical
If the tails of the curve of the frequency distribution
on either side of the central value are equal, then the
distribution is said to be symmetrical
service with product a vittle for the paint of every different to
server section and to be a contract to the server of any for
and applied to the state of the
X = Md = Mo

* Measure of skewness | coefficient of skewness a. Karl Pearson's Measure of skewness First Measure of Skewness Sk(P) = Mean-Mode = X-Mo Standard Deviation 6 Second Measure of skewness Sk(P) = 3(x-Md) Decision: a. If Sk=0, the distribution is symmetrical (normal) b. If Sk70, the distribution is positively skewed c. If Sk40, the distribution is negatively skewed b. Bowley's Measure of skewness

SK(B) = Q3+Q1-2Md

c. Kelly's coefficient of skewness

Kelly's coefficient of skewness is based on
percentiles or deciles.

on quartiles is known as Bowley's coefficient of skowness.

The second coefficient of skewness based

Moments:

The aritheratic average of the various powers of the deviations of the items in a distribution from their arithmetic mean are known as the moments of the distribution.

Moments about the Mean (central moments)

Individual Series:

$$U_r = \frac{\xi (x - \overline{x})^r}{n} = \frac{\xi x^r}{n}$$

Where,

X = Arithmetic Mean

 $X = X - \overline{X}$

n = Number of terms

r = 1,2,3,4 are the first four moments

about the mean. .

Here.

Discrete and continuous Series:

Where, X = X-X N = Total frequency

U1 = First moment about Mean = Efx

Ma = Second moment about Mean = Efx2

U3 = Third moment about Mean = Efx3

My = Forth moment about Mean = Efx4

Where.

X = middle value of class (for continuous series)

Moments about an Arbitary Point (Raw moments)

The calculation of the moments about the mean will be easy only when the arithmetic mean of the given series be in whole number. But if the arithmetic mean be not a whole number, then the calculation will be too difficult. In such cases, we find the moments about any number

(arbitrary number). Such type of moments are known as known moments. It is denoted by e.

Individual Series:

$$u'_r = \frac{z(x-a)^r}{n} - \frac{zd^r}{n}$$

where,

n = number of observations

x-9=d

U' = First moment about a = Ed

 H'_2 = Jecond moment about $q = 2d^2$

 $U_3 = \text{Third moment about } 9 = \text{Ed}^3$

My = Fourth moment about q = Edy

Discrete Series:

U1 = First moment about a = Efd

U'2 = Second moment about a = ≤fd²
N

ly = Third moment about a = Efd3

M'y = Fourth moment about a = Efd"

Continuous series:

M'r = Et(x-q) x h' = Efd' x h''

N

where, $d' = \frac{x-q}{h}$, h = common factor

 $U'_1 = First moment about <math>q = \frac{\text{Efd'}}{N} \times h$

 $M_2' = Second moment about a = Efd'^2 x h^2$

M'3 = Third moment about 9 = Efd'3 X h3

* Relation between central moments and raw moments:

Note: U2 is also known as Variance (U2=02)

* Kurtosis

Besides centeral tendency, dispersion and skewness, the fourth characteristic of the frequency distribution for the kurtosis. Kurtosis indicates the peakedness of the distribution. In statistics kurtosis refers to the degree of peakedness or flatness of a distribution compared to a normal

Measure of kurtosis:

Kurtosis is measured by the coefficient of kurtosis. The simple measure of kurtosis based on both quartiles and percentiles is percentile coefficient of kurtosis.

$$K = \frac{1}{2} (Q_3 - Q_1)$$
 $P_{90} - P_{10}$

where. Q3 = upper Quartile

Q1 = Lower Quartile

P30 = 90th Percentile

P10 = 10th Percentile

Test for kurtosis:

- a. When k = 0.263, the distribution is mesokurlic (normal)
- b. When K > 0.263, the distribution is leptokurtic (more peaked)
- c. When K < 0.263 , the distribution is platykurtic (flat topped)

* Coefficient of skewness and kurtosis Based on Moments:

The relative measure of skewness based on moments, denoted by Beta one, B, is given by

Bishwo sir Notes 9851214642

where, Uz: Third central moment

42 = Serond central moment

The alternative relative measure of skewness based on moments, denoted by gamma one (TI) is given by.

$$\gamma_1 = \beta_1$$

$$= \sqrt{\frac{\mu_3^2}{\mu_3^3}} = \frac{\mu_3}{\mu_2^{3/2}}$$

Interpretation:

If M3=0 i.e B,=0 or Y1=0, the distribution is symmetrical. If M3>0 i.e Y1>0, the distribution is positively skewed. If M3<0 i.e Y1<0, the distribution is negatively skewed.

The relative measure of kurtosis based on moments is given by the coefficient Bo or Yo defined by Karl Pearson

$$\beta_2 = \frac{\mu_4}{\mu_2^2} \qquad \qquad \gamma_2 = \beta_2 - 3$$

Interpretation:

If B2 = 3, or Y2 = 0, the distribution is mesokurtic.

If Ba 73, or Ya 70, the distribution is leptokurtic

If B2 < 3. or Y2 < 0. the distribution is platykurtic.

2076 Q.N.16

Solo

Calculation of Karl-Pearson's Coefficient of skewness

wages (Rs.)	(f)	Mid-value (X)	d'= X-85	fd'	fd'2
40-50	10	45	-4	-40	160
50 -60	15	55	-3	-45	135
OF-00	20	65	-2	-40	80
O8-0F	. 28 fo	75	-1	-28	28
80-90	35→fi	A= 85	0	0	0
90-100	25 f2	95	1	25	25
100-110	18	105	2 .	36	72
110-120	10	115	3	30	90
120-130	8	125	4.	32	128
Y2	N=2f= 169	1. 2.5	100 LS7 K	€fd' = -30	≥fd'2= 718

We lenow that,

Calculation of Mean

Mean
$$(\bar{x}) = A + \frac{\xi f d'}{N} x h$$

= Rs. 83.22

Bishwo sir Notes 9851214642

calculation of standard deviation

$$= \frac{718}{169} - \left(\frac{-30}{169}\right)^2 \times 10$$

= 20.54

Calculation of mode

Since the highest frequency is 35, the modal class is 80-90. So.

We have.

Mode (Mo) =
$$L + \frac{f_1 - f_0}{2f_1 - f_0 + f_2} \times h$$

= $80 + \frac{35 - 28}{2 \times 35 - 28 - 25} \times 10$
= 84.12

NOW.

$$S_{k}(P) = \frac{\overline{X} - M_{0}}{20.54} = \frac{83.22 - 84.12}{20.54} = -0.04$$

Since, sk(p) = -0.04 < 0, the given distribution is negatively skewed.

2061 2nd Q.N.4 SOJ

calculation of quartile values

T		nle of mortone (c)	C.F	1
-	Daily wages (Rs.)	No. of workers (f)		+
	Be10M 200	20	20	1
	100 - 150	81	701	
	150 - 300	120	221	
	300 - 500	150	371	1
	500 - 1000	130	501	
-	1000 - 1500	30	531	
	1500 - 2000	10	541	
	Above 2000	5	546	-
		N= 2f=546		1

We know that.

Coefficient of skewness based on Quartie Value is Bowley's coefficient of skewness so,

$$S_k(3) = \frac{Q_3 + Q_1 - 2 M_d}{Q_3 - Q_1}$$

calculation of QL

= 136.5. The c.f. just greater than 136.5 is .221 which lies in class 150-300.

live have, L= 150, f= 120, c.f= 101, h= 150 $Q_1 = L + \frac{N_4 - c \cdot f}{f} \times h$ $= 150 + \frac{136 \cdot 5 - 101}{120} \times 150$ $= 194 \cdot 375$

calculation of Q3

3N = 3x546 4 = 409.5. The c.f just greater than 409.5 is 501 which lies in class 500-1000.

We have. L = 500, f = 130, $c \cdot f = 371$, h = 500

 $Q_3 = L + \frac{3N_{y} - C \cdot f}{f} \times h$ $= 500 + \frac{409 \cdot 5 - 371}{130} \times 500$ = 648.076

Calculation of Median (Md)

 $\frac{N}{2} = \frac{546}{2} = 273$. The c.f. just greater than 273 is 371. Which lies in class 300-500.

We have.

L= 300 , f= 150 , c.f= 221 , h= 200

= 300+ 273-221 × 200

= 369.33

NOW.

= 648.076 + 194.375 - 2x369.33 648.076 - 194.375

= 0.22

Since, Sk(B) = 0.22 > 0, the distribution is positively skewed.

2058 Q.NO.6

soin . Since, mid . value is given we should find their classes .

Calculation of Mean, Mode and Standard Deviation d'= X-450 Income Mid-value(x) No. of workers(f) fd'= fd'2 100-200 -50 150+50 80 -3 -240 720 26250 200-300 105 -2 -210 420 300-400 350 120 -1 -120 120 400-500 A=450 165 0 0 0 500-600 550 100 1: 1: 100 100 600-700 650 90 2 180 360 008-00F 750 60 3 180 540 800-900 40 850 4 760 640 N==f=760 ≥fd' = 50 Efd'2 2900

Complete Yourself as Question No. 2076 Q.N.16

2073 Old Q.N.8

Soil

Calculation of	first	four	moments	about	Mean
----------------	-------	------	---------	-------	------

	No. of Companies	Mid-value X	КЪ	x=X-X	(tx) t(x-x)	$f(x-\bar{x})^2$	(tx_3) $t(x-\underline{x})_3$	(tx_d)
0-2	3	1	3	11-4	-12	48	- 192	768
2-4	5.	3	15	-2	-10	20	-40	80
4-6	9	5	45	0	0	0	0	0
6-8	5	7	35	2	10	20	40	80
8-10	3	9	27	4	12	48	192	768
	N=Et		≥fx	Anistope.	≥fx	Efx2	Efx3	5fx4
4	= 25		= 125		= 0	= 136	= 0	= 1696
				-				

Mean
$$(\bar{x}) = \frac{5fx}{N} = \frac{125}{25} = 5$$

· calculation of first four mounents about mean (central moments)

$$\mu_1 = \frac{\xi f x}{N} = \frac{0}{25} = 0$$

$$M_2 = \frac{2 f \chi^2}{N} = \frac{136}{25} = 5.44$$

$$M_3 = \frac{2 f x^3}{N} = \frac{0}{25} = 0$$

Bishwo sir Notes 9851214642

For skewness

$$\beta_1 = (\mu_3)^2 = 0$$

$$(\mu_2)^3 = (5.44)^3 = 0$$

Since, B. = 0. the given distribution is symmetrical.

For kurtosis

$$B_2 = U_4 = 84.84$$

$$(U_2)^2 = (5.44)^2 = 2.29$$

Since, B2 = 2.29 < 3, the given distribution is platykunic.

2072 Old Q.N.8

SOLT

and skewness Calculation of mean, variance $f(x-\bar{x})|f(x-\bar{x})^2$ $f(x-x)^{4}$ f(x-x)3 x=25 Frequences Mid-value class (fx3) X=X-X (tx3) X (fx) (fx4) X Interval (4) -640000 4 5 -20 -20 20 1600 -32000 0-10 60000 -60 600 90 -10 -6000 6 15 10-20 0 0 0 0 0 25 250 70 20-30 60 600 10 6000 60,000 6 210 35 30-40 640,000 80 1600 20 4 180 32000 40-50 45 ≤fx2 Efx4 sfx2 5fX Sfx N= 5+ = 0 =750 =4400 = 0 =1400000 = 30

For Mean

Mean (
$$\bar{X}$$
) = $\frac{2fX}{N} = \frac{750}{30} = 25$

Calculation of first four moments about Mean (central moments)

$$M_2 = \frac{5 f x^2}{N} = \frac{4400}{30} = 146.67$$

$$M_3 = \frac{5 f x^3}{N} = \frac{0}{30} = 0$$

Variance = 1/2 = 146.67

For skewness

Since, B = 0 the given distribution is symmetrical.

Analytical Answer Question:

2074 DID 4.N.IL

Solv

Calculation	or	Skewinecc	and	Luri Osis

Wages Per	. No. of workers	Mid-value		THE THE		2	v v
hour (R.)	(4)	(x)	d= 20	ta,	£9,0	1d'3	fd' 4
0-20	5	10	-3	-15	45	-135	405
20-40	7	30	-2	-14	28	-56	112
40-60	16	50	-1	-16	16	-16	16
60-80	20	4=70	12.0	0	0	0	0
80-100	28	90	1	28	28	28	28
100-120	12	110	2	24	48	96	192
0Hr-061	10	130	3	30	90	270	810
140-160	2	150	4	8	32	128	512
	N= = 100	1.00	(4,17)	≥fq,	5.fd'2	≤fd'3	≥fd'4
		£ 34801		= 45	= 287	= 315	= 2075

$$u'_1 = \frac{5fd'}{N} \times h = \frac{45}{100} \times 20 = 9$$

$$M_2 = \frac{54d^{12}}{N} \chi h^2 = \frac{287}{100} \chi (20)^2 = 1148$$

$$M_3 = \frac{2 f d^{13}}{19} \chi h^3 = \frac{315}{100} \chi (20)^3 = 25.200$$

 $M'_{4} = \frac{1}{2} \frac{1}{4} \frac{1}{4} \times (h)'' = \frac{2075}{100} \times (20)^{4} = 3320000$

Calculation of central moments was some to assume

U1 = U1 -U1 = 9+9 (=x0 and profile a more to

 $U_2 = U_2 - (U_1)^2$ = 1148 - (9)² = 1067

 $\mu_3 = \mu_3' - 3. \mu_2' \cdot \mu_1' + 2 (\mu_1')^3$ = 25200 - 3x11u8x9 + 2x (9)³ = -4938

 $\mu_{4} = \mu_{4}^{1} - \mu_{1} \mu_{3}^{1} \cdot \mu_{1}^{1} + 6 \cdot \mu_{2}^{1} \cdot (\mu_{1}^{1})^{2} - 3 \cdot (\mu_{1}^{1})^{4}$ $= 33,20,000 - 4 \times 25200 \times 9 + 6 \times 1148 \times (9)^{2} - 3 \times (9)^{4}$ = 2951045

For skewness

 $\beta_1 = \frac{(\mu_9)^2}{(\mu_9)^3} = \frac{(-4938)^2}{(1067)^3} = 0.0155$

since, U3 < 0, the given distribution is negatively skewed.

For kurtosis

 $\beta_2 = \frac{\mu_4}{(\mu_2)^2} = \frac{2951.045}{(1067)^2} = 2.5921$

Since. B2 = 2.5921 < 3, the given distribution is platykurtic.

2073 Q. NO. 17	· 15 m 7 FT	typy ER In his
Sols	- 0- 300g g s	A Property of the Parket of th
a. calculat	ion of frequency distribution	
	ber of customers (N) = 50	Alighe College Marine, Inc.
The state of the s	imum waiting time (Xs) = 17	U = U, - LU, -LU,
	ximum waiting time (XL)= 72	
The second secon	mber of classes, K=7	(111/2 214 2 214
. Using s	truge's rule, we have.	9)8111 8 (9)
	lass size, h= Range	XL- Xs - 72-17
	Number of classes	* 7
	1/21/2012 4: 1/2,-2	= 7.85 = 10
F	irst dass = 10-20 hexavijas	SPORCED : SE be of
lo	1st class = 70-80	26647 -
	- Calculation of Frequency	histribution.
Waiting Time	Taily bars	Number of customers (f)
10-20	The CONTRACT A 4 SEX TANK WING VINCENS X by	000,10,3.
20-30	++++ ++++ 1	State 11 5 11 5
30-40	1111 1111-11	12
40 - 50	1111 1111	13
50-60	111 1 × - (A-22-)	G C
60-70	1111/2020 = 15/4/01/1	4
70-80	Jarn destributions vertures	maje of all manes
		N= Ef = 50

Waiting Time	No. of custo- mers (f)	Mid-	d' = X-45	£ď,	fd'2	fd'3	fd'
10-20	3	15	-3	-9 (27	-81	243
20-30	11	25	-2	-22	44	-88	176
30-40	12	35	-1	-12	12	-12	12
40-50	13	A=45	0	5.9)0	. 0 2	· · · O -	0
50-60	6	55	1	G	6	06	6
60-70	4	65	2	8	16	32	64
70-80		75	3(11)	2 3	9	27	81
	N= 5 f	(1,5-)	12.4(0)	≤fd'	£fd'2	≥fd'3	≥tq. 4
	= 50	-1-1-1		= -26	= 114	11= -116	=582

Calculation of Raw moments $M'_1 = \frac{5 + d'}{N} \times h = \frac{-26}{50} \times 10^{-5.2}$

$$M_2' = \frac{\xi f d'^2}{N} \chi h^2 = \frac{114}{50} \chi (10)^2 = 228$$

$$u'_{y} = \frac{\epsilon f d'_{x} h'_{x}}{N} h'_{x} = \frac{582}{50} \chi (10)^{4} = 116400$$

Calculation of central moments of assumed to and

$$M_2 = M_2' - (M_1')^2$$

$$= -2320 - 3 \times 228 \times (-5.2) + 2 \times (-5.2)^3$$

For skewness:

$$\beta_1 = (43)^2 = (955.58)^2$$

 $(42)^3 = (200.96)^3 = 0.1125$

For kurtosis:

$$\beta_2 = \frac{\mu_1}{4\mu_2^2} = \frac{102941.24}{(200.96)^2} = 2.549$$

$$4_2^2$$
 (200.96)2 = 2.549

2071 Q.N.19

2010

(-	Calculation	of skewr	ness and	Kurtos	S by us	ing mome	n+
Assets		Mid- Value(X)	d'= X-17.5	004	fd'2	fd'3	fd'4
0-5	20	2.5	-3	-60	180	-540	1620
5-10	25	7.5	-2	-50	100	-200	400
10-15	50	12.5	- 1	-50	50	- 50	50
15-20	40	A=17.5	0	0	0	0	0
20-25	20	22.5	1.11	20	20	20	20
25-30	15	27.5	2	30	60	120	240
	N=st	1000	1	≥fd'	≤fd'2	sfd'3	≥fd'4
	OFL =			= -110	= 410	= -650	= 2330

equilation of Raw moments

$$M_1' = \frac{2fd'}{N} \times h = \frac{-110}{170} \times 5 = -3.24$$

$$M_2' = \frac{5 \text{ fd'}^2}{N} \chi h^2 = \frac{410}{170} \chi (5)^2 = 60.29$$

$$M_3^2 = \frac{2fd'^3}{N} \times h^3 = \frac{-650}{170} \times (5)^3 = -477.94$$

Calculation of central moments

$$41 = 41 - 41$$

= -3.24 - (-3.24) = 0

$$\mu_2 = \mu_2' - (\mu_1')^2$$

= 60.29 - (-3.24)²
= 49.49

$$H_3 = \lambda I_3 - 3 \cdot \lambda I_2 \cdot \lambda I_1 + 2 (\lambda I_1)^3$$

= -477.94 - 3x 60.29x (-3.24) + 2x (-3.24)³
= 40.05

$$M_{4} = M_{4}^{1} - 4.8 + 3.8 + 6.8 + 6.8 + 2.8 + 6.8 + 0.29 \times (-3.24) + 0.29 \times (-3.24)$$

For skewness

$$\beta_1 = \frac{(\mu_3)^2}{(\mu_2)^3} = \frac{(40.05)^2}{(49.79)^3} = 0.0130$$

Since. Bi = 0.0130>0, the given distribution is positively skewed.

For kurtosis

$$\beta_2 = \frac{U_4}{(40)^2} = \frac{5838.88}{(49.79)^2} = 2.35$$

Since, B2 = 2.35 < 3, the given distribution is platykurotic.

@ calculation of coefficient of variation (c.v)

Mean(\bar{x}) = A+ $\leq fd' \times h$

= A+ U'

= 17.5+(-3.24)

= 14.26

Variance = 12

. Standard Deviation (=) = 12

49.79

= 7.0562

Coefficient of Variation (c.v) = 5 X100

14.56 X 100

= 49.48%

2075 Q.N.12

SOI

Given: The Law moments of value a are:

A=5, li=2, li2= 20, li3=40, li4=50

Calculation of Central moments

$$M_2 = M_2' - (M_1')^2$$

= 20 - (2)²
= 16

$$l_3 = l_3 - 3 \cdot l_2 \cdot l_1' + 2 \cdot (l_1')^3$$

= $40 - 3 \times 20 \times 2 + 2 \times (2)^3$
- -64

$$H_{4} = H'_{4} - 4.H'_{3} \cdot H'_{1} + 6.H'_{2} \cdot (H'_{1})^{2} - 3(H'_{1})^{4}$$

$$= 50 - 4 \times 40 \times 2 + 6 \times 20 \times (2)^{2} - 3 \times (2)^{4}$$

$$= 162$$

For Mean:

Mean(x) = A+ 11 = 5+2 = 7

For Standard Deviation:

Standard Deviation (=) = 142 = 16 = 4

For skewness:

$$\beta_1 = \frac{(\mu_3)^2}{(\mu_2)^3} = \frac{(-64)^2}{(16)^3} = 1$$

Since. Uz = -64 < 0, the given distribution is negatively skewed.

For kurlosis:

$$\beta_2 = \frac{14}{(16)^2} = \frac{162}{(16)^2} = 0.633$$

Since, B2 = 0.633 K3, the distribution is platykurtic

2074 Q.N.16

301

Given:

Calculation of first &aw moments.

$$M_1' = \frac{100}{N} = \frac{-14}{100} = -0.44$$

$$M_2 = \epsilon f d^2 x = 154$$

$$24\frac{1}{3} = \frac{100}{100} = -0.62$$

Calculation of first four central moments

$$\mu_1 = \mu_1' - \mu_1'$$

= -0.14 - (-0.14)

$$U_2 = U_2' - (U_1')^2$$

= 1.54 - (-0.14)²
= 1.5204

$$\mu_3 = \mu_3' - 3 \cdot \mu_2' \cdot \mu_1' + 2 (\mu_2')^3$$

= -0.62 - 3x1.54x(-0.14) + 2x(-0.14)³
= 0.021312

For skewness:

$$\frac{\beta_1 = (\mu_3)^2}{(\mu_2)^3} = \frac{(0.021312)^2}{(1.5204)^3} = 0.0001$$

Hence, the given distribution is approximately symmetrial.

For kurtosis:

$$\beta_2 = \frac{1}{(1.5204)^2} = \frac{4.73275152}{(1.5204)^2} = 2.047$$

Since, B2 = 2.047 <3, the given distribution is platykurtic.

2075 Q.N.13 Son We have. Smallest Value (Xs) = 11 Largest value (x2) = 29 N = 11 For QL Q1 = value of N+1/th = value of = 15 For Median: Md = value of (N+1)th item Value of 6th item 21 985121 For Q3

- = value of $\left(\frac{3(11+1)}{4}\right)^{4n}$ item
 - = Value of 9th item
 - = 25

Five Number summary is

Xs	Q,	Md	Q3	XL
77	15	21	25	29

Box-and- whisker plot

Since. the lest side of the is longer, so it is negatively skewed.

12.

2072 (ii) Q.NO.13

SOI

Arrange the given data in ascending order 264, 266, 298, 317, 342, 426, 451, 492, 512, 545.

1011

562,631,1049

We have.

N=13

Smallest Value (xs) = 264

Largest Value (XL) = 1049

For Q1:

$$Q_1 = \text{value of } \left(\frac{N+1}{4}\right)^{th} \text{ item}$$

For Median:

For Q3:

c. Yes, the data are positevely skewed since it has longer tail on right side than that of left whisker.

2071 old Q.NO.5

Sojn

Given:

Pearson's Coefficient of skewness, Sk(P) = 0.4Coefficient of vortination I(CV) = 30%Mode $I(\overline{X}) = 9$ Mean $I(\overline{X}) = 9$ Median $I(\overline{X}) = 9$

Here.

SK(P) = Mean-Mode	CA = E X100
S.D'	Χ̈́
$0.4 = \sqrt{-88}$	30 6
0.3 🛪	100 X
0.19 \(\bar{x} = \bar{x} - 88	$5 = 0.3 \bar{\chi} - 0$
.° X = 100	Part Letter

Using empirical relationship, we have.

Mo = 3Md - 2x

88 = 3 Md - 2x100

3 Md = 288

% Md = 288 3 = 96

Here. The value of mean and median are 100 and 96 respectively

2 Given:

A= 4, 21,=1, 212=4, 113=10

Mean (x) = A+ 21 = 4+1 = 5

Volume (6)2 = $H_2 = H_2 - (H_1)^2$ = $4 - (1)^2$ = 3

Hence, the Value of mean, Variance and third moment about mean are 5, 3 and 0 respectively.

2070 BN 100

SOL

Given:

Standard deviation of a symmetrical distribution (6) = 4 Fourth moment, about mean, (ly)=?

lale know that.

Variance = H2 = (5)2 = (4)2 = 16

i. The distribution will be platykurtic if

Mu 4 768

- . The value of fourth mount about mean should be less than 768 in order that the distribution is platykurtic.
- The distribution will be teptokurtic if

ely 73 (els)2 73 (els)2 73 (16)2 73

· 24 > 768

Fig. The value of fourth moment about mean should be greater than 768, in order that the distribution is teptokurtic.

2065 Q.NO.3

S017

Cail of Mean. Mode and Standard Deviation

Sizein	the of of theory, t		X-37.5		0
Inches	No. of observations	(X)	d'= 3	tq,	fd12
30-33	3	31.5	-2	-6	12
33-36	5	34.5	-1	-5	5.
36-39	26 fo	A= 37.5	D	0	0
39-42	46 > 51	40.5	1	46	46
42-45	20 > f2	43.5	2	40	.20
45-u8	. 10	46.5	3	30	90
	N===== 110	1 - 1 - 1 · 1		Std = 105	Efd'= 233
					No. of the Control

For Mean:

For Mode.

Since the highest frequency is 46, the modal class is 39-42.50. 4=39, fr = 46, fo = 26, fr = 20, h=3

we have,

$$M_0 = L + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$

$$= 39 + 46 - 26$$

$$2 \times 46 - 26 - 20 \times 3$$

$$= 40.304$$

For standard Deviation:

$$= \sqrt{\frac{233}{110} - \left(\frac{105}{110}\right)^2} \times 3$$

$$= 3.295$$

Pearson's Measure of skewness:

$$S_{K}(P) = \overline{X} - M_{0}$$

$$= 40.364 - 40.304$$

$$= 3.295$$

$$= 0.018$$

Since, Sklp) = 0.018 > 0, the given distribution is positively skewed.

2070: Q.NO. 10b Som Arbitany value (A) = 4 First four raw moments = 11 = 1, l'2 = 3 : 1'3=7. l'y= 21 Central moments: U1 = U1 - U1 = 0 le = l'2 - (u!)2 = 3-(1)2 = 2 Now, Mean (x) = 4+ 21' = 4+1 = 5 Standard Deviation (5) = JH2 = J2 = 1.41 2068 Q.NO.7 SOL Given: Karl pearson's coefficient of skewness = 0.5 Median = 42 Mode = 36 Here. Mo = 3Md - 2 X 36 = 3×42 - 2× % X = 45 Coefficient of Vocation . 6= 18 CA = \$ X100 = 42 X100 =40%

Moshoiles. Coll