Simple Correlation and Regression analysis

Simple Correlation and Regression Analysis
\rightarrow The relationship between the two variables such that change in the value of one variable, makes a change in the value of the other variable is known as the correlation.
\rightarrow The measure of the degree of correlation between the two variables is known as the correlation coefficient.

* Types of correlation:

1. Positive and Negative correlation
2. Linear and non- Linear correlation
3. Simple, multiple and partial correlation.

* Methods of studying correlation:-

1. Scatter diagram
2. Karl Pearson's correlation coefficient
3. Spearman's Rank correlation

* Karl Pearson's correlation coefficient:

It is also known as Pearson's correlation coefficient.

$$
r=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var} X} \sqrt{\operatorname{Var} \cdot y}}
$$

Note that r is also called pearson's coefficient of correlation.

- Properties of correlation coefficient:

1. The value of r has no unit.
2. Its formula is symmetrical: $r_{x y}=r_{y x}$
3. It is independent of the change of origin: $r_{x y}=r_{u v}$
where.

$$
\begin{aligned}
& U=X-A \\
& V=Y-B \text { and } A \cdot B=A \text { spumed means }
\end{aligned}
$$

4. It is independent of the change of scale: $r_{x y}=r_{u v}$

Where.

$$
\begin{aligned}
& u=\frac{x-A}{h} \\
& v=\frac{Y-B}{k} \quad \text { and } h, k=\text { constants }
\end{aligned}
$$

- 5. Its values lies between -1 to 1 ie $-1 \leq r \leq 1$

6. If $r=1$, there is perfect positive relationship If $r=-1$, there is perfect negative relationship if $r=0$, there is no correlation at all.
7. It is the geometric mean between two regression coetficient i.e $r=\sqrt{b_{x y} \text {. by }}$
Computing coefficient of correlation:
(i) When deviations from actual mean are used:

$$
r=\frac{\Sigma x y}{\sqrt{\Sigma x^{2} \varepsilon y^{2}}}
$$

(ii) When actual data are used: Direct method

$$
r=\frac{n \sum X Y-\Sigma X \cdot \Sigma Y}{\sqrt{\left[n \Sigma x^{2}-\left(\sum X\right)^{2}\right]\left[n \sum r^{2}-(\Sigma Y)^{2}\right]}}
$$

(OR)

$$
r=\frac{n \Sigma X Y-\Sigma X \cdot \Sigma Y}{\sqrt{n \Sigma X^{2}-(\Sigma X)^{2}} \sqrt{n \Sigma Y^{2}-(\Sigma Y)^{2}}}
$$

(iii) When deviations from assumed mean are used

$$
r=\frac{n \Sigma U V-\Sigma U \cdot \Sigma V}{\sqrt{n \Sigma U^{2}-(\Sigma U)^{2}} \sqrt{n \Sigma V^{2}-(\Sigma V)^{2}}}
$$

Where.

$$
\begin{aligned}
U & =X-A \\
V & =Y-B \\
A . B & =\text { Assumed means }
\end{aligned}
$$

(iv) When step-deviations are used

$$
r=\frac{n \Sigma u v-\Sigma u \cdot \varepsilon v}{\sqrt{n \sum u^{2}-\left(\sum u\right)^{2}} \sqrt{n \sum v^{2}-\left(\sum v\right)^{2}}}
$$

Where.

$$
\begin{aligned}
u & =\frac{X-A}{h} \\
v & =\frac{Y-B}{K} \\
h . K & =\text { common factors }
\end{aligned}
$$

* Probable Error

Probable error of the correlation coefficient denoted by P.E. is the measure of testing the reliability of the calculated value of r.

$$
P . E=0.6745 \times \frac{1-r^{2}}{\sqrt{n}}
$$

Note:
i. If $r<P . E$, it is insignificant.
ii. If $r>6$ P.E, it is significant.

* Correlation coefficient of bi-variate distribution.
\rightarrow The distribution in which the values of two variables X and Y are grouped and the frequencies of different groups are given is known as "Bivariate frequency table" or "corelation table".
\rightarrow The correlation coefficient for bivariate distribution is computed by the following formula:

$$
r=\frac{N \Sigma f u v-\Sigma f u \cdot \Sigma f v}{\sqrt{N \Sigma f u^{2}-(\Sigma f u)^{2}} \sqrt{N \Sigma f v^{2}-(\Sigma f v)^{2}}}
$$

Where,
$N=$ Total frequency. $u=\frac{X-A}{h}, v=\frac{Y-B}{K}$

* Rank Correlation:

The degree of relationship between two variables with respect to their respective ranks is known as "Rank correlation coefficient"

$$
R=1-\frac{6 \varepsilon d^{2}}{n\left(n^{2}-1\right)}
$$

Where.

$$
\begin{aligned}
& d=R_{1}-R_{2} \\
& n=\text { no. of pair of observations }
\end{aligned}
$$

Note: The value of R lies between -1 and +1 .
Repeated Ranks

$$
R=1-\frac{6\left[\sum d^{2}+\frac{m_{1}\left(m_{1}^{2}-1\right)}{12}+\frac{m_{2}\left(m_{2}^{2}-1\right)}{12}+\cdots \cdots\right]}{n\left(n^{2}-1\right)}
$$

* Regression Analysis
\rightarrow gt is a statistical device, with the help of which. we can estimate or predict the value of one variable when the value of other variable is known.
\rightarrow The unknown variable which we have to predict is called dependent variable and the variable whose value is known is called independent variable.
\rightarrow The analysis used to describle the average relationship between two variables is known as simple linear regression analysis.
- Regression of X on Y
- Regression. of Y on X

Regression equation and regression coefficient:
a) The regression equation of Y on X which is used to describle the variation in the value of Y for given change in the value of x.

Equation:

$$
Y-\bar{Y}=b_{y x}(x-\bar{x})
$$

where.

$$
b_{y x}=\frac{n \varepsilon x y-\Sigma x \cdot \varepsilon y}{n \Sigma x^{2}-(\Sigma x)^{2}}
$$

OR.

$$
\begin{aligned}
& b_{y x}=\frac{n \sum u v-\Sigma u \cdot \varepsilon v}{n \varepsilon u^{2}-(\Sigma u)^{2}} \\
& b_{y x}=\frac{N \sum f u v-\varepsilon f u \cdot \Sigma f v}{N \Sigma f u^{2}-(\Sigma f u)^{2}} \times \frac{k}{h}\binom{\text { Bivariate }}{\text { Distribution }}
\end{aligned}
$$

(b) The regression equation of X on Y which is used to describe the variation in the value of x for given change in the value of Y.

Equation:

$$
x-\bar{X}=b_{x y}(Y-\bar{Y})
$$

where.

$$
b_{x y}=\frac{n \Sigma x y-\Sigma x \cdot \varepsilon y}{N \varepsilon y^{2}-(\Sigma y)^{2}}
$$

or. $b_{x y}=\frac{n \varepsilon u v-\varepsilon u \cdot \varepsilon v}{n \varepsilon v^{2}-(\varepsilon v)^{2}}$
or. $\quad b \times y=\frac{N \varepsilon f u V-\varepsilon f u \cdot \varepsilon f v}{N \varepsilon f v^{2}-(\varepsilon f v)^{2}} \times \frac{h}{K}\binom{$ Bivariate }{ distribution }
Note:
The correlation coefficient is the square root of the product of the two regression coefficient i.e

$$
r=\sqrt{b_{y x} \cdot b_{x y}}
$$

Estimation of Age of wife.

$$
x=75 \text { Years. } Y=?
$$

The regression equation of Y on X is given by:

$$
\begin{aligned}
& Y-\bar{Y}=b_{y x}(x-\bar{X}) \\
& Y-36.6=0.993(x-45.8) \\
& Y=0.993 x-45.4794+36.6 \\
& \therefore Y=-8.8794+0.993 x \text { is the required Equation. }
\end{aligned}
$$

Working Notes:

$$
\begin{aligned}
& \bar{X}=A+\frac{\sum f U}{N} \times h=45+\frac{8}{100} \times 10=45.8 \\
& \bar{Y}=B+\frac{\sum f V}{N} \times K=40+\frac{(-34)}{100} \times 10=36.6
\end{aligned}
$$

$$
\begin{aligned}
& b_{y x}=\frac{N \Sigma f U V-\Sigma f U \cdot \sum f V}{N \Sigma f U^{2}-(\Sigma f u)^{2}} \times \frac{K}{h} \\
&=\frac{100 \times 88-8 \times(-34)}{100 \times 92-(8)^{2}} \times \frac{10}{10} \\
&=0.993
\end{aligned}
$$

Now,

$$
\text { The age of wife } \begin{aligned}
(Y) & =-8.8794+0.993 \times 75 \\
& =65.5956 \text { Years }
\end{aligned}
$$

The regression coefficient of Y on X is

$$
\begin{aligned}
b_{y x} & =\frac{N \Sigma f U V-\sum f U \cdot \sum f V}{N \Sigma f U^{2}-(\Sigma f U)^{2}} \times \frac{k}{h} \\
& =\frac{25 \times(-16)-(-9) \times(-3)}{25 \times 47-(-9)^{2}} \times \frac{2}{2} \\
& =-0.390
\end{aligned}
$$

The regression coefficient of X on Y is

$$
\begin{aligned}
b_{x y} & =\frac{N \Sigma f u v-\sum f U . \Sigma f v}{N \Sigma f v^{2}-\left(\sum f v\right)^{2}} \times \frac{h}{k} \\
& =\frac{25 \times(-16)-(-9) \times(-9)}{25 \times 49-(-3)^{2}} \times \frac{2}{2} \\
& =-0.351
\end{aligned}
$$

The correlation coefficient between X and Y is

$$
\begin{aligned}
r & = \pm \sqrt{b_{x y} \times b_{y x}} \\
& = \pm \sqrt{(-0.351) \times(-0.390)} \\
& = \pm 0.370 \\
\therefore r & =-0.370
\end{aligned}
$$

\therefore There is low. degree of negative correlation between the height of fathers and sons.

2076 Q. No. 18
Sol
Let. $\quad X=$ Motor Registration in (000 nos.)
$Y=$ No. Of tyres sold in (000 nos.)
Computation Table

Years	X	Y	$X Y$	X^{2}	r^{2}
1	60	68	4080	3600	4624
2	62	60	3720	3844	3600
3	65	62	4030	4225	3844
4	70	80	5600	4900	6400
5	48	40	1920	2304	1600
6	53	52	2756	2809	2704
7	73	62	4526	5329	3844
8	65	60	3900	4225	3600
9	82	81	6642	6724	6561
10	72	85	6120	5184	7225
$N=10$	ΣX	ΣY	$\sum X Y$	$\sum X^{2}$	$\sum Y^{2}=$
	$=650$	$=650$	$=43,294$	$=43,144$	$=44002$

1. Calculation of coefficient of correlation between X and Y.

$$
\begin{aligned}
r & =\frac{N \Sigma X Y-\sum X \cdot \Sigma Y}{\sqrt{N \sum x^{2}-(\Sigma x)^{2}} \sqrt{N \Sigma Y^{2}-(\Sigma Y)^{2}}} \\
& =\frac{10 \times 43.294-650 \times 650}{\sqrt{10 \times 43144-(650)^{2}} \sqrt{10 \times 44002-(650)^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{432940-422500}{94.5515 \times 132.363} \\
& =0.83419
\end{aligned}
$$

(2) Since. $r=0.83419$, there is high. degree of positive correlation between motor registration and no. of tyres sold.
(3) Test for significant

$$
\begin{aligned}
P E(r) & =0.6745 \times \frac{1-r^{2}}{\sqrt{n}} \\
& =0.6745 \times \frac{1-(0.83419)^{2}}{\sqrt{10}} \\
& =0.0649 \\
6 P E(r) & =6 \times 0.0649=0.3894
\end{aligned}
$$

Since: $r=0.83419>6 P E(r)=0.3894, r$ is significant.
(4) Calculation of two regression coefficient

Regression coefficient of X on Y is

$$
b_{x y}=\frac{N \Sigma X Y-\Sigma X \cdot \Sigma Y}{N \Sigma Y^{2}-(\Sigma Y)^{2}}=\frac{10 \times 43294-650 \times 650}{10 \times 44002-(650)^{2}}=0.5959
$$

Regression coetficient of Y on X is

$$
\begin{aligned}
b_{y x}=\frac{N \Sigma x r-\Sigma x \cdot \Sigma Y}{N \Sigma x^{2}-(\Sigma x)^{2}} & =\frac{10 \times 43294-650 \times 650}{10 \times 43144-(650)^{2}} \\
& =1.1678
\end{aligned}
$$

(5) Expected motor Registration $=92.000(x)$

Number of tyres $(Y)=$?
The regression equation of Y on X is

$$
\begin{aligned}
Y-\bar{Y} & =b_{y x}(x-\bar{x}) \\
Y-65 & =1.1678(x-65) \\
Y-65 & =1.1678 x-75.907 \\
Y & =-10.907+1.1678 X \text { is the required equation }
\end{aligned}
$$

working Notes:

$$
\begin{aligned}
& \bar{X}=\frac{\Sigma X}{N}=\frac{650}{10}=65 \\
& \bar{Y}=\frac{\Sigma Y}{N}=\frac{650}{10}=65
\end{aligned}
$$

Now,

$$
\text { Number of tyres } \begin{aligned}
(\gamma) & =-10.907+1.1678 \times 92(000) \\
& =-10.907+107.4376(000) \\
& =96,530.6
\end{aligned}
$$

The coefficient of correlation between X and Y is

$$
\begin{aligned}
r & =\frac{N \Sigma f U V-\sum f U \cdot \sum f V}{\sqrt{\mp \sqrt{\sum f U^{2}-(\Sigma f U)^{2}} \sqrt{\sum V \sum f v^{2}-(\Sigma f v)^{2}}}} \\
& =\frac{40 \times 31-23 \times 10}{\sqrt{40 \times 51-(23)^{2}} \sqrt{40 \times 50-(10)^{2}}} \\
& =\frac{1240-230}{38.871 \times 43.588}=0.5961
\end{aligned}
$$

\therefore There is a positive correlation between sales revenue and advertisement expenditure.

Test for significance:

$$
\begin{aligned}
P E(r) & =0.6745 \times \frac{1-r^{2}}{\sqrt{n}} \\
& =0.6745 \times \frac{1-(0.5961)^{2}}{\sqrt{40}} \\
& =0.06875
\end{aligned}
$$

Now,

$$
6 P E(r)=6 \times 0.06875=0.4125
$$

Since. $r=0.5961>6 P E(r)=0.4125$, it is significant.

Estimation of Sales Revenue:
Advertisement cost $(Y)=$ Rs. 70 (thousand)
Sales Revenue $(X)=$?
The regression equation of X on Y is

$$
\begin{aligned}
& X-\bar{X}=b_{x y}(Y-\bar{Y}) \\
& X-178.75=2.658(Y-22.5) \\
& X-178.75=2.658 Y-59.805 \\
& X=178.75-59.805+2.658 Y \\
& \therefore x=118.945+2.658 Y \text { is the required equation. }
\end{aligned}
$$

Working? Note:

$$
\begin{aligned}
& \bar{X}=A+\frac{\sum f U}{N} \times h=150+\frac{23}{40} \times 50=178.75 \\
& \begin{aligned}
\bar{Y}=B+\frac{\sum f V}{N} \times k=20+\frac{10}{40} \times 10=22.5 \\
\begin{aligned}
& b \times y= \\
& \frac{N \Sigma f U V-\Sigma f U \cdot \Sigma f V}{N \Sigma f V^{2}-(\Sigma f V)^{2}} \times \frac{h}{K}=\frac{40 \times 31-23 \times 10}{40 \times 50-(10)^{2}} \times \frac{50}{10} \\
&=2.658
\end{aligned}
\end{aligned} . \begin{array}{r}
\end{array}
\end{aligned}
$$

How

$$
\begin{aligned}
\text { Sales Revenue }(x) & =118.945+2.658 \times 70 \\
& =305.005(\text { thousands }) \\
& =305.005 \times 1000 \\
& =\text { Rs. } 305.005
\end{aligned}
$$

Correlation between advertisement expenditure and sales:

$$
\begin{aligned}
r & =\frac{N \Sigma f u v-\Sigma f u . \Sigma f v}{\sqrt{N \Sigma f U^{2}-(\Sigma f u)^{2}} \sqrt{N \Sigma f v^{2}-(\Sigma f v)^{2}}} \\
& =\frac{100 \times(-48)-0 \times 100}{\sqrt{100 \times 120-(0)^{2}} \sqrt{100 \times 200-(100)^{2}}} \\
& =\frac{-4800}{109.55 \times 100} \\
& =-0.4381
\end{aligned}
$$

Test for significant:

$$
\begin{aligned}
\text { PE. }(r) & =0.6745 \times \frac{1-r^{2}}{\sqrt{n}} \\
& =0.6745 \times \frac{1-(-0.4381)^{2}}{\sqrt{100}} \\
& =0.05450 \\
6 P E(r) & =6 \times 0.05450=0.3270
\end{aligned}
$$

Since. $|r|=0.4381>6 P E(r)=0.3270$, it is significant.

Estimation of Sales:
Advertisement Expenditure $(x)=82$ crores Sales $(Y)=$?

The regression equation Y on X is

$$
\begin{aligned}
& Y-\bar{Y}=b_{y x}(X-\bar{X}) \\
& Y-22.5=-0.2(X-45) \\
& Y=22.5-0.2 X+9 \\
& \therefore Y=37.5-0.2 X \text { is the required equation. }
\end{aligned}
$$

Working Notes:

$$
\begin{aligned}
\bar{X} & =A+\frac{\sum f U}{N} \times h=45+\frac{0}{100} \times 10=45 \\
\bar{Y} & =B+\frac{\sum f V}{N} \times K=17.5+\frac{100}{100} \times 5=22.5 \\
b_{y x} & =\frac{N \Sigma f U V-\sum f U \cdot \Sigma f V}{N \sum f U^{2}-\left(\sum f U\right)^{2}} \times \frac{K}{h} \\
& =\frac{100 \times(-48)-0 \times 100}{100 \times 120-(0)^{2}} \times \frac{5}{10}=-0.2
\end{aligned}
$$

Again.
Sales $(Y)=31.5-0.2 \times 82=15.1$ crores.

2072 (ii) Q. No. 19

Soil? Let.
$x=$ Frequency of advertisement in electronic medial day $Y=$ Volume of sales per day.

Since, $r=0.6863>6 \mathrm{PE}(r)$, the relationship is significant.
b. Since, the relationship between advertisement on electronic medra and sales is positive, frequency of advertisement on electronic media should be increased to promote the sales.
C. Estimation of sales:

Frequency of Advertisement $(x)=7$
Sales $(y)=?$
Sales $(Y)=$?
The regression equation Y on X is given by

$$
\begin{aligned}
& Y-\bar{Y}=b_{y x}(x-\bar{X}) \\
& Y-9.5=0.952(x-5.53) \\
& Y=9.5+0.952 x-5.26456
\end{aligned}
$$

$Y=4.23544+0.952 X$ is the required equation.

Working Notes:

$$
\begin{aligned}
\bar{X} & =A+\frac{\sum f U}{N} \times h \\
& =4+\frac{23}{30} \times 2 \\
& =5.53
\end{aligned}
$$

$$
\begin{aligned}
\bar{Y} & =B+\frac{\sum f V}{N} \times k \\
& =7.5+\frac{12}{30} \times 5 \\
& =9.5 \\
b_{y x} & =\frac{N \Sigma f U V-\Sigma f U \cdot \Sigma f V}{N \Sigma f U^{2}-(\Sigma f U)^{2}} \times \frac{k}{h} \\
& =\frac{30 \times 28-23 \times 12}{30 \times 67-(23)^{2}} \times \frac{5}{2} \\
& =0.952
\end{aligned}
$$

Now.

$$
\text { Saves } \begin{aligned}
(Y) & =4.23544+0.952 \times 7 \\
& =10.89944(\text { in } 000) \\
& =
\end{aligned}
$$

2068 Q. No. 11
SOl?
Given:

$$
N=25, \sum x=125, \sum Y=100, \sum x^{2}=650 ; \sum Y^{2}=460, \sum x Y=508
$$

Wrong pairs of observations: $(X, y)=(6,14)$ and $(8,6)$ correct pairs of observations: $(X, Y)=(8,12)$ and $(6,8)$
a. Calculation of correct values:

Correct $N=25$
correct $\Sigma x=125-6-8+8+6=125$
Correct $\sum Y=200-14-6+12+8=100$
correct $\sum x^{2}=650-6^{2}-8^{2}+8^{2}+6^{2}=650$
correct $\Sigma y^{2}=460-14^{2}-6^{2}+12^{2}+8^{2}=436$
Correct $\Sigma Y^{2}=460-14^{2}-6+12+8=436$
Correct $\Sigma x y=508-(6 \times 14)-(8 \times 6)+(8 \times 12)+(6 \times 8)=520$
b. Calculation of correct coefficient of correlation:

$$
\begin{aligned}
r & =\frac{N \Sigma X Y-\sum X \cdot \Sigma Y}{\sqrt{N \Sigma X^{2}-\left(\sum X\right)^{2}} \sqrt{N \Sigma Y^{2}-(\Sigma Y)^{2}}} \\
& =\frac{25 \times 5.20-125 \times 100}{\sqrt{25 \times 650-(125)^{2}} \sqrt{25 \times 436-(100)^{2}}} \\
& =\frac{13000-12500}{25 \times 30} \\
& =0.667
\end{aligned}
$$

equation of
c. Calculation of \wedge two lines of regression:

$$
\begin{aligned}
\bar{x}=\frac{\Sigma x}{N}=\frac{125}{25}=5 \\
\bar{Y}=\frac{\Sigma Y}{N}=\frac{100}{25}=4
\end{aligned} \left\lvert\, \begin{aligned}
b_{x y}=\frac{N \Sigma x Y-\Sigma x \cdot \Sigma Y}{N \Sigma r^{2}-(\Sigma Y)^{2}} & =\frac{25 \times 520-125 \times 100}{25 \times 436-(100)^{2}} \\
& =0.556
\end{aligned}\right.
$$

$$
b_{y x}=\frac{N \Sigma x Y-\Sigma x \cdot \Sigma Y}{N \Sigma x^{2}-(\Sigma x)^{2}}=\frac{25 \times 520-125 \times 100}{25 \times 650-(125)^{2}}=0.8
$$

The regression equation X on Y is

$$
\begin{aligned}
x-\bar{x} & =b_{x y}(Y-\bar{Y}) \\
x-5 & =0.556(Y-4) \\
X-5 & =0.556 Y-2.224 \\
x & =5+0.556 Y-2.224 \\
\therefore x & =2.776+0.556 Y
\end{aligned}
$$

The regression equation Y on X is

$$
\begin{aligned}
& Y-\bar{Y}=b_{y x}(x-\bar{x}) \\
& Y-4=0.8(x-5) \\
& Y-4=0.8 x-4 \\
& Y=4+0.8-4 \\
& \therefore Y=0.8 x
\end{aligned}
$$

d. Calculation of probable error:

$$
\begin{aligned}
P . E(r) & =0.6745 \times \frac{1-r^{2}}{\sqrt{n}} \\
& =0.6745 \times \frac{1-0.667^{2}}{\sqrt{25}} \\
& =0.075
\end{aligned}
$$

$6 P . E(r)=6 \times 0.075=0.45$
Since, $r=0.667>6 P . E(r)=0.45$, the relation ship is significant.

2073 Q. NO. 18
SOl?
Let. $X=$ job performance index

$$
r=\text { salary }
$$

X	Y	X^{2}	Y^{2}	$X Y$
9	36	81	1296	324
7	25	49	625	175
8	33	64	1089	264
4	15	16	225	60
7	28	49	784	196
5	19	25	361	95
5	20	25	400	100
6	22	36	484	132
$\Sigma X=51$	$\Sigma Y=198$	$\sum X^{2}=345$	$\sum Y^{2}=5264$	$\sum X Y=1346$

Employees fob performance $(x)=10$ and 2
salary $(Y)=$?
The regression equation Y on x is given by:

$$
\begin{aligned}
& Y-\bar{Y}=b_{y x}(x-\bar{X}) \\
& Y-24.75=4.2138(x-6.375) \\
& Y=24.75+4.2138 x-26.863
\end{aligned}
$$

$Y=-2.113+4.2138 X$ is the required equation

Working Notes:

$$
\begin{aligned}
& \bar{X}=\frac{\Sigma X}{N}=\frac{51}{8}=6.375 \\
& \bar{Y}=\frac{\Sigma Y}{N}=\frac{198}{8}=24.75 \\
& b_{y x}=\frac{N \Sigma X Y-\Sigma X \cdot \Sigma Y}{N \Sigma X^{2}-(\Sigma X)^{2}}=\frac{8 \times 1346-51 \times 198}{8 \times 345-(51)^{2}} \\
&=\frac{10768-10098}{2760-2601} \\
&=4.2138
\end{aligned}
$$

Estimation of Salary:
If 10 b performance index $(x)=10$

$$
\text { salary } \begin{aligned}
(Y) & =-2.113+4.2138 \times 10 \\
& =40.025(000)
\end{aligned}
$$

If lob performance Index $(x)=2$

$$
\begin{aligned}
\text { Salary }(Y) & =-2.113+4.2138 \times 2 \\
& =6.3146(000)
\end{aligned}
$$

Test FOR significant:
The relationship between job performance index and salary is:

$$
\begin{aligned}
r & =\frac{N \sum X Y-\sum X \cdot \sum Y}{\sqrt{N \sum x^{2}-\left(\sum X\right)^{2}} \sqrt{N \sum Y^{2}-(\Sigma Y)^{2}}} \\
& =\frac{8 \times 9346-51 \times 198}{\sqrt{8 \times 345-(51)^{2}} \sqrt{8 \times 5264-(198)^{2}}} \\
& =\frac{10768-10098}{12.6095 \times 53.9259} \\
& =0.9853 \\
P . E(r) & =0.6745 \times \frac{1-r^{2}}{\sqrt{n}} \\
& =0.6745 \times \frac{1-(0.9853)^{2}}{\sqrt{8}} \\
& =0.0069 \quad \\
6 P E(r) & =6 \times 0.0069=0.0414
\end{aligned}
$$

Since. $r=0.9853>6 \cdot P E(r)=0.0414$, the relationship is Significant.

2072 Q.NO. 19
SO1페
Let. $x=$ Promotion expenses
$Y=$ sales
computation Table

Year	Y	X	X^{2}	Y^{2}	$x Y$
2003	16	4	16	256	64
2004	20	4	16	400	80
2005	18	6	36	324	108
2006	24	10	100	576	240
2007	20	10	100	400	200
2008	22	12	144	484	264
$N=6$	$\Sigma Y=120$	$\Sigma X=46$	$\Sigma X^{2}=412$	$\Sigma Y^{2}=2440$	$\Sigma X Y=956$

a. Calculation of two regression coefficient:
(i) Y on X

$$
\begin{aligned}
b_{y x}=\frac{N \Sigma x Y-\Sigma x \cdot \Sigma Y}{N \Sigma x^{2}-(\Sigma x)^{2}} & =\frac{6 \times 956-46 \times 120}{6 \times 412-(46)^{2}} \\
& =0.6067
\end{aligned}
$$

(ii) X on Y

$$
\begin{aligned}
b_{x y}=\frac{N \Sigma X Y-\Sigma X \cdot \sum Y}{N \Sigma X^{2}-(\Sigma Y)^{2}} & =\frac{6 \times 956-46 \times 120}{6 \times 2440-(120)^{2}} \\
& =0.90
\end{aligned}
$$

b. Calculation of correlation coefficient between sales and promotional expenditure

$$
\begin{aligned}
r & = \pm \sqrt{b_{y x} \cdot b_{x y}} \\
& = \pm \sqrt{0.6067 \times 0.90} \\
& =+0.7389
\end{aligned}
$$

Since, $r=0.7389$, there is high degree of positive correlation between sales and promotional expenditure.
c. Test for significance:

$$
\begin{aligned}
P . E(r) & =0.6745 \times \frac{1-r^{2}}{\sqrt{n}} \\
& =0.6745 \times \frac{1-(0.7389)^{2}}{\sqrt{6}} \\
& =0.1250 \\
6 P . E(r) & =6 \times 0.1250=0.75
\end{aligned}
$$

Since, r is nearly equal to $6 P E(r)$, nothing can be concluded.
d. Estimation of Sales:

Promotional expenses $(x)=$ Rs 20.000
Sales $(Y)=$?
The regression equation Y on X is

$$
\begin{aligned}
& Y-\bar{Y}=b_{y x}(x-\bar{X}) \\
& Y-20=0.6067(x-7.667) \\
& Y=20+0.6067 x-4.652
\end{aligned}
$$

$Y=15.348+0.6067 X$ is the required equation.
Working Note:

$$
\begin{aligned}
\bar{X} & =\frac{\sum X}{N}=\frac{46}{6}=7.667 \\
\bar{Y} & =\frac{\sum Y}{N}=\frac{120}{6}=20 \\
b_{y x} & =\frac{N \Sigma X Y-\Sigma X \cdot \Sigma Y}{N \Sigma X^{2}-(\Sigma X)^{2}} \\
& =\frac{6 \times 956-46 \times 120}{6 \times 412-(46)^{2}} \\
& =0.6067
\end{aligned}
$$

Now.

$$
\begin{aligned}
\text { Sales }(Y) & =15.348+0.6067 \times 20(000) \\
& =27.482(000)
\end{aligned}
$$

e. The equation $Y=15.348+0.6067 X$ is in the form of $Y=a+b x$.
$a=15.348$ indicates the sales when the promotional expenses is zero.
$b_{y x}=0.6067$ indicates the rate of change of sales when the unit change in the promotional expenses. That is if the promotional expenses is increased by Rs. 1000 , the Sales is increased by R1. 60.670 .

